4 Inch N-type SiC Substrate

Short Description:

Semicera’s 4 Inch N-type SiC Substrates are meticulously designed for superior electrical and thermal performance in power electronics and high-frequency applications. These substrates offer excellent conductivity and stability, making them ideal for next-generation semiconductor devices. Trust Semicera for precision and quality in advanced materials.


Product Detail

Product Tags

Semicera’s 4 Inch N-type SiC Substrates are crafted to meet the exacting standards of the semiconductor industry. These substrates provide a high-performance foundation for a wide range of electronic applications, offering exceptional conductivity and thermal properties.

The N-type doping of these SiC substrates enhances their electrical conductivity, making them particularly suitable for high-power and high-frequency applications. This property allows for the efficient operation of devices such as diodes, transistors, and amplifiers, where minimizing energy loss is crucial.

Semicera utilizes state-of-the-art manufacturing processes to ensure that each substrate exhibits excellent surface quality and uniformity. This precision is critical for applications in power electronics, microwave devices, and other technologies that demand reliable performance under extreme conditions.

Incorporating Semicera’s N-type SiC substrates into your production line means benefiting from materials that offer superior heat dissipation and electrical stability. These substrates are ideal for creating components that require durability and efficiency, such as power conversion systems and RF amplifiers.

By choosing Semicera’s 4 Inch N-type SiC Substrates, you are investing in a product that combines innovative material science with meticulous craftsmanship. Semicera continues to lead the industry by providing solutions that support the development of cutting-edge semiconductor technologies, ensuring high performance and reliability.

Items

Production

Research

Dummy

Crystal Parameters

Polytype

4H

Surface orientation error

<11-20 >4±0.15°

Electrical Parameters

Dopant

n-type Nitrogen

Resistivity

0.015-0.025ohm·cm

Mechanical Parameters

Diameter

150.0±0.2mm

Thickness

350±25 μm

Primary flat orientation

[1-100]±5°

Primary flat length

47.5±1.5mm

Secondary flat

None

TTV

≤5 μm

≤10 μm

≤15 μm

LTV

≤3 μm(5mm*5mm)

≤5 μm(5mm*5mm)

≤10 μm(5mm*5mm)

Bow

-15μm ~ 15μm

-35μm ~ 35μm

-45μm ~ 45μm

Warp

≤35 μm

≤45 μm

≤55 μm

Front(Si-face) roughness(AFM)

Ra≤0.2nm (5μm*5μm)

Structure

Micropipe density

<1 ea/cm2

<10 ea/cm2

<15 ea/cm2

Metal impurities

≤5E10atoms/cm2

NA

BPD

≤1500 ea/cm2

≤3000 ea/cm2

NA

TSD

≤500 ea/cm2

≤1000 ea/cm2

NA

Front Quality

Front

Si

Surface finish

Si-face CMP

Particles

≤60ea/wafer (size≥0.3μm)

NA

Scratches

≤5ea/mm. Cumulative length ≤Diameter

Cumulative length≤2*Diameter

NA

Orange peel/pits/stains/striations/ cracks/contamination

None

NA

Edge chips/indents/fracture/hex plates

None

Polytype areas

None

Cumulative area≤20%

Cumulative area≤30%

Front laser marking

None

Back Quality

Back finish

C-face CMP

Scratches

≤5ea/mm,Cumulative length≤2*Diameter

NA

Back defects (edge chips/indents)

None

Back roughness

Ra≤0.2nm (5μm*5μm)

Back laser marking

1 mm (from top edge)

Edge

Edge

Chamfer

Packaging

Packaging

Epi-ready with vacuum packaging

Multi-wafer cassette packaging

*Notes: "NA" means no request Items not mentioned may refer to SEMI-STD.

tech_1_2_size
SiC wafers

  • Previous:
  • Next: