3C-SiC Wafer Substrate

Short Description:

Semicera 3C-SiC Wafer Substrates offer superior thermal conductivity and high electrical breakdown voltage, ideal for power electronic and high-frequency devices. These substrates are precision-engineered for optimal performance in harsh environments, ensuring reliability and efficiency. Choose Semicera for innovative and advanced solutions.


Product Detail

Product Tags

Semicera 3C-SiC Wafer Substrates are engineered to provide a robust platform for next-generation power electronics and high-frequency devices. With superior thermal properties and electrical characteristics, these substrates are designed to meet the demanding requirements of modern technology.

The 3C-SiC (Cubic Silicon Carbide) structure of Semicera Wafer Substrates offers unique advantages, including higher thermal conductivity and a lower thermal expansion coefficient compared to other semiconductor materials. This makes them an excellent choice for devices operating under extreme temperatures and high-power conditions.

With a high electrical breakdown voltage and superior chemical stability, Semicera 3C-SiC Wafer Substrates ensure long-lasting performance and reliability. These properties are critical for applications such as high-frequency radar, solid-state lighting, and power inverters, where efficiency and durability are paramount.

Semicera's commitment to quality is reflected in the meticulous manufacturing process of their 3C-SiC Wafer Substrates, ensuring uniformity and consistency across every batch. This precision contributes to the overall performance and longevity of the electronic devices built upon them.

By choosing Semicera 3C-SiC Wafer Substrates, manufacturers gain access to a cutting-edge material that enables the development of smaller, faster, and more efficient electronic components. Semicera continues to support technological innovation by providing reliable solutions that meet the evolving demands of the semiconductor industry.

Items

Production

Research

Dummy

Crystal Parameters

Polytype

4H

Surface orientation error

<11-20 >4±0.15°

Electrical Parameters

Dopant

n-type Nitrogen

Resistivity

0.015-0.025ohm·cm

Mechanical Parameters

Diameter

150.0±0.2mm

Thickness

350±25 μm

Primary flat orientation

[1-100]±5°

Primary flat length

47.5±1.5mm

Secondary flat

None

TTV

≤5 μm

≤10 μm

≤15 μm

LTV

≤3 μm(5mm*5mm)

≤5 μm(5mm*5mm)

≤10 μm(5mm*5mm)

Bow

-15μm ~ 15μm

-35μm ~ 35μm

-45μm ~ 45μm

Warp

≤35 μm

≤45 μm

≤55 μm

Front(Si-face) roughness(AFM)

Ra≤0.2nm (5μm*5μm)

Structure

Micropipe density

<1 ea/cm2

<10 ea/cm2

<15 ea/cm2

Metal impurities

≤5E10atoms/cm2

NA

BPD

≤1500 ea/cm2

≤3000 ea/cm2

NA

TSD

≤500 ea/cm2

≤1000 ea/cm2

NA

Front Quality

Front

Si

Surface finish

Si-face CMP

Particles

≤60ea/wafer (size≥0.3μm)

NA

Scratches

≤5ea/mm. Cumulative length ≤Diameter

Cumulative length≤2*Diameter

NA

Orange peel/pits/stains/striations/ cracks/contamination

None

NA

Edge chips/indents/fracture/hex plates

None

Polytype areas

None

Cumulative area≤20%

Cumulative area≤30%

Front laser marking

None

Back Quality

Back finish

C-face CMP

Scratches

≤5ea/mm,Cumulative length≤2*Diameter

NA

Back defects (edge chips/indents)

None

Back roughness

Ra≤0.2nm (5μm*5μm)

Back laser marking

1 mm (from top edge)

Edge

Edge

Chamfer

Packaging

Packaging

Epi-ready with vacuum packaging

Multi-wafer cassette packaging

*Notes: "NA" means no request Items not mentioned may refer to SEMI-STD.

tech_1_2_size
SiC wafers

  • Previous:
  • Next: